Abstract
Organic-inorganic hybrid perovskites (OIHPs) have received particular attention due to their characteristic structural tunability and flexibility. These features make OIHPs behave with excellent modifications on macroscopic properties, such as ferroicity or semiconductor performances, etc. Herein, we report two 2D hybrid stibium-based halide perovskite (C3H7N)3Sb2X9 (X = Br, 1; Cl, 2) ferroelastic semiconductor possessing dual switching properties of dielectric and second harmonic generation (SHG). Notably, these two hybrids exhibit halogen-regulated ferroelasticity and semiconductor properties. There is a significant difference in Curie temperature (Tc) and X-ray radiation detection sensitivity (S), i.e., the ΔTc and ΔS are 38 K and 87 μC Gyair-1 cm-2, respectively. Meanwhile, crystals 1 and 2 do not show dark current drift in cyclic measurements of different radiation doses with stable switching ratios of 30 and 10, separately. Meanwhile, these results were proven by scientific experimental results and density functional theory (DFT) calculations. Our work presents a facile and practical method to regulate macroproperties on the molecular level, providing a new vision to develop hybrid perovskite ferroic-photoelectric materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.