Abstract

The influence of Hall current on the time-dependent flow of nanofluid in the presence of dust particles is investigated. The water-based copper nanoliquid containing fine dust particles occupies a stretching surface. The effective thermal conductivity and the viscosity of the nanoliquid are estimated by KVL (Khanafer-Vafai-Lightstone) model. The notion of boundary layer approximation is employed to model the governing equations for both nanofluid and dust phases. Similarity transformations are employed to obtain ordinary differential equations from the governed partial differential equations. The numeric solutions are developed via Runge-Kutta-Fehlberg integration scheme. The graphical illustrations are to explain the impacts of the governing parameters on flow fields. It is established that the nanofluid's Nusselt number increases due to the suspension of dust particles. An enhancement of heat transfer rate has a direct relationship with Hall current and unsteadiness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call