Abstract
Metal halide perovskite semiconductors have emerged as highly efficient amplifying materials; to ensure practical applicability, it is important to have precise control over the spectral and polarization characteristics of lasing emission. In this study, we present effective strategies for manipulating single- and multimode lasing from surface-emitting and optically pumped perovskite distributed feedback lasers. We show that cladding structures can be made to modify the optical properties of guided transverse electric and magnetic modes within the gain medium. This leads to spectral tuning of multipeak lasing emission and the generation of linear polarization modes. Our results are supported with a comprehensive multilayer slab waveguide model and confirmed with two different perovskite materials: methylammonium lead iodide and cesium lead bromide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.