Abstract

Abstract High-contrast instruments are required for direct imaging of faint exoplanets around bright host stars. In high-contrast instruments, a wave front control system is needed to generate a dark hole by suppressing residual stellar speckles. However, the achievable contrast is limited by the phase quantization error (i.e., finite phase resolution) of wave front control devices, such as deformable mirrors or spatial light modulators. In this paper, we propose a halftone method for wave front control to improve the contrast using a wave front control device with quantized phase modulation. In a numerical simulation, the contrast was improved from 1.4 × 10−9 to 3.8 × 10−10 by halftone wave front control. In addition, we performed a laboratory demonstration in which a spatial light modulator was used for wave front control, and the contrast was improved from 2.2 × 10−7 to 6.0 × 10−8 for a phase resolution of 2π/256.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.