Abstract

We predict a half-quantized mirror Hall effect induced by mirror symmetry in strong topological insulator films. These films are known to host a pair of gapless Dirac cones in the first Brillouin zone associated with surface electrons. Our findings reveal that mirror symmetry assigns a unique mirror parity to each Dirac cone, resulting in a half-quantized Hall conductance of ±e22h\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pm \\! \\frac{{e}^{2}}{2h}$$\\end{document} for each cone. Despite the total electrical Hall conductance being null due to time-reversal invariance, the difference in the Hall conductance between the two cones yields a quantized Hall conductance of e2h\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{{e}^{2}}{h}$$\\end{document} for the difference in mirror currents. The effect of helical edge mirror current - a crucial feature of this quantum effect - may, in principle, be determined by means of electrical measurements. The half-quantum mirror Hall effect reveals a type of mirror-symmetry induced quantum anomaly in a time-reversal invariant lattice system, giving rise to a topological metallic state of matter with time-reversal invariance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.