Abstract

Abstract The electronic structure and half-metallic (HM) properties of new alloys KYX2 (Y=Ti, V, and Cr; X=C, N, and O) containing transition metals and sp elements were investigated within the density functional theory (DFT) using the self-consistent full-potential linearized augmented plane wave (FPLAPW) method. It was found that these new compounds can be experimentally synthesized because of their negative formation energies. The total energy calculations showed that in all compounds, the stable state structure was a ferromagnetic AlCu2Mn-type structure except for KTiC2 and KTiN2 which were stable in a nonmagnetic (NM) AlCu2Mn-type structure. The KTiO2 in both structures, KCrO2 in AlCu2Mn-type structure, and KVO2 in CuHg2Ti-type structure were half-metallic ferromagnets. KVO2 in AlCu2Mn-type structure was a special case with a ferromagnetic semiconducting behavior. The origin of minority band gaps for KTiO2 in both structures was also studied using the band structure calculations. The total magnetic moments of HM compounds were integer values which were in agreement with Slater-Pauling rule (Mtot=Ztot−12). Furthermore, the regions of half-metallictiy in HM compounds were considerably wider than those of Heusler compounds including transition metals, indicating the high robustness of half-metallicity with variation of lattice constants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.