Abstract

Superconducting loops containing a π-junction are predicted to show a spontaneous magnetic moment in zero external magnetic field. In order to confirm this longstanding prediction experimentally, we performed magnetization measurements on individual mesoscopic superconducting niobium loops with a ferromagnetic (PdNi) π-junction. The loops are prepared on top of the active area of a micro Hall-sensor based on high mobility GaAs/AlGaAs heterostructures. We observe switching of the loop between different magnetization states at very low-magnetic fields, which is asymmetric for positive and negative sweep direction. This is evidence for a spontaneous current induced by the intrinsic phase shift of the π-junction. In addition, the presence of the spontaneous current at zero applied field is directly revealed by an increase of the magnetic moment with decreasing temperature, which results in a half integer flux quantization in the loop at low temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.