Abstract

The work demonstrates a three-fold increase in photoelectrochemical efficiency of hematite nanorods as a result of the combination of Hafnium surface doping and the incorporation of a ZrO2 underlayer on FTO. While the ZrO2 layer reduced the electron loss from the back-injection into the FTO contact support, Hafnium surface doping did not significantly alter the hematite lattice structure. But rather, Hafnium induced nanorod diameter reduction from 32 ± 2 and 26 ± 2 nm, with a consequent increase in the active surface area. The linear sweep voltammetry measurements with 100 mW cm−2 illumination in a 500 nm photoanode thickness showed a photocurrent density of 2.07 mA cm−2 at 1.23 V in a reversible hydrogen electrode (RHE). The value contrasts with the bare hematite rods (0.75 mA cm−2), highlighting the photoanode design's role in improving solar power hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call