Abstract

The cardiac protection of mesenchymal stem cell (MSC) transplantation for myocardial infarction (MI) is largely hampered by low cell survival. Haem oxygenase 1 (HO‐1) plays a critical role in regulation of cell survival under many stress conditions. This study aimed to investigate whether pre‐treatment with haemin, a potent HO‐1 inducer, would promote the survival of MSCs under serum deprivation and hypoxia (SD/H) and enhance the cardioprotective effects of MSCs in MI. Bone marrow (BM)‐MSCs were pretreated with or without haemin and then exposed to SD/H. The mitochondrial morphology of MSCs was determined by MitoTracker staining. BM‐MSCs and haemin‐pretreated BM‐MSCs were transplanted into the peri‐infarct region in MI mice. SD/H induced mitochondrial fragmentation, as shown by increased mitochondrial fission and apoptosis of BM‐MSCs. Pre‐treatment with haemin greatly inhibited SD/H‐induced mitochondrial fragmentation and apoptosis of BM‐MSCs. These effects were partially abrogated by knocking down HO‐1. At 4 weeks after transplantation, compared with BM‐MSCs, haemin‐pretreated BM‐MSCs had greatly improved the heart function of mice with MI. These cardioprotective effects were associated with increased cell survival, decreased cardiomyocytes apoptosis and enhanced angiogenesis. Collectively, our study identifies haemin as a regulator of MSC survival and suggests a novel strategy for improving MSC‐based therapy for MI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call