Abstract

The leading-order hadronic contribution to the anomalous magnetic moment of the muon is given by a weighted integral over the subtracted hadronic vacuum polarization. This integral is dominated by euclidean momenta of order the muon mass which are not available on current lattice volumes with periodic boundary conditions. Twisted boundary conditions can in principle help access momenta of any size even in a finite volume. We investigate the implementation of twisted boundary conditions both numerically (using all-mode averaging for improved statistics) and analytically, and present our initial results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call