Abstract
In this paper, we study the class of the processes, where dynamics depends essentially on the properties of the hadron wave functions involved in the reactions. In this case, the momentum dependence of the form of the wave functions, imposed by the Lorentz invariance and in particular by the Lorentz contraction, can be tested in the experiment and may strongly influence the resulting cross-sections. One example of such observables is given by the hadron form factors in the case when the large [Formula: see text] behavior is mostly frozen, while the Lorentz contraction of the hadron wave functions is taken into account. Another example, considered earlier, is the strong hadron decay with high-energy emission. In this paper, we study the role of the Lorentz contraction in the high-energy hadron–hadron scattering process at large momentum transfer. For the [Formula: see text] and [Formula: see text] scattering at large [Formula: see text], it is shown that at small [Formula: see text], the picture of two exponential slopes in the differential cross-section, explained previously by the author, remains stable, while the backward scattering cross-section is strongly increased by the Lorentz contraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.