Abstract
The interaction between genetics and diet may explain the present disagreement in the protective role of vitamin intake on cardiovascular disease. We cross-sectionally assessed the interaction of habitual dietary intake of β-carotene, vitamin C, folate, and vitamin E with single nucleotide polymorphisms (SNPs) on brachial-ankle pulse wave velocity (baPWV), a measure of arterial stiffness. Dietary intakes of β-carotene, vitamin C, folate, and vitamin E were quantified by a food frequency questionnaire in 3198 healthy men and women (≥ 40 years) from the Korea Multi-Rural communities Cohort study. baPWV was measured, and 19 SNPs were genotyped. The associations and interactions between dietary vitamin intake, SNP genotype, and baPWV were assessed using general linear models. In both men and women, dietary intake of β-carotene, vitamin C, folate, or vitamin E and baPWV were not directly associated. Vitamin C, folate, and vitamin E intake had an interaction with rs4961 (ADD1) genotype on baPWV in men. rs4961 also interacted with folate intake on baPWV in women. In women, rs10817542 (ZNF618) and rs719856 (CD2AP) had an interaction with β-carotene and folate intake and rs5443 (GNB3) had an interaction with vitamin E intake on baPWV. In general, minor allele homozygotes with low vitamin intake had higher baPWV than other subgroups. Results were similar when supplement users were excluded. Higher intake of dietary vitamin C, folate, and vitamin E may be related to high baPWV in healthy Korean men who are minor allele homozygotes of rs4961. In healthy Korean women, dietary folate, β-carotene, and vitamin E intake may affect baPWV differently according to rs4961, rs10817542, rs719856, or rs5443 genotype. Greater dietary intake of these nutrients may protect those that are genetically vulnerable to stiffening of the arteries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have