Abstract

Phytophagous pentatomid insects can negatively impact agricultural productivity and the brown marmorated stink bug (Halyomorpha halys) is an emerging invasive pest responsible for damage to many fruit crops and ornamental plants in North America. Many phytophagous stink bugs, including H. halys, harbor gammaproteobacterial symbionts that likely contribute to host development, and characterization of symbiont transmission/acquisition and their contribution to host fitness may offer alternative strategies for managing pest species. “Candidatus Pantoea carbekii” is the primary occupant of gastric ceca lumina flanking the distal midgut of H. halys insects and it is acquired each generation when nymphs feed on maternal extrachorion secretions following hatching. Insects prevented from symbiont uptake exhibit developmental delays and aberrant behaviors. To infer contributions of Ca. P. carbekii to H. halys, the complete genome was sequenced and annotated from a North American H. halys population. Overall, the Ca. P. carbekii genome is nearly one-fourth (1.2 Mb) that of free-living congenerics, and retains genes encoding many functions that are potentially host-supportive. Gene content reflects patterns of gene loss/retention typical of intracellular mutualists of plant-feeding insects. Electron and fluorescence in situ microscopic imaging of H. halys egg surfaces revealed that maternal extrachorion secretions were populated with Ca. P. carbekii cells. The reported findings detail a transgenerational mode of symbiont transmission distinct from that observed for intracellular insect mutualists and illustrate the potential additive functions contributed by the bacterial symbiont to this important agricultural pest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call