Abstract

Habitat structure may regulate species diversity at local scales, with complex habitats being normally associated with greater species richness than simple ones. We employed a new method of quantifying habitat structure to examine community structure in a stone-dwelling community of mobile macroinvertebrates inhabiting a perennial, upland stream (the Steavenson River) in southeastern Australia. We distinguished between the effects of increasing habitat structure by adding similar physical elements (habitat complexity) from that produced by adding qualitatively different sources of habitat structure (habitat heterogeneity) at spatial scales relevant to the biota. We used a field experiment to ask: (1) Does variation in habitat structure at local scales (i.e., between individual stones) result in variation in species richness (S) and numbers of individuals (N), and if so, are changes in S wrought passively by changes in N, or is there evidence of local regulation of S? (2) Are macroalgae, which are a source of habitat structure for invertebrates, also affected by stone surface structure? (3) What are the effects of habitat structure on faunal composition and body sizes? We used clay bricks as substrata and manipulated three sources of habitat structure in a crossed design: large surface pits and cracks (low density/high density); small pits caused by variation in surface texture (rough/smooth); and the abundance of macroalgae (begun with algae, begun without algae). The bricks were sampled for both fauna and epilithon on days 14 and 28 of colonization, when species richness and densities of individuals were comparable to natural stream stones. Habitat structure altered faunal diversity and abundances, with the majority of common species reaching higher abundances on creviced or rough surfaces. Rough surfaces were additionally associated with shifts in overall faunal composition and markedly smaller body sizes. Each element of habitat structure (large crevices, roughness, and macroalgae) promoted both increased species richness and densities of individuals. Rarefaction indicated that changes in S were disproportionate to changes in N, which suggests that S is regulated by local processes. Overall species richness was highest on day 14 with no difference in S between simple and complex surfaces. By day 28, simple surfaces had lost taxa relative to complex surfaces, suggesting that species richness in this stream community is regulated at a local scale, even though faunal composition changes continually and is contingent upon habitat structure. Habitat structure also affected the epilithon, suggesting that sources of habitat complexity and heterogeneity are interwoven in this system. Furthermore, the epilithon response to surface structure depended on the spatial scale of habitat complexity, with more of the red, filamentous alga Audouinella hermannii being found on rough surfaces than on smooth surfaces, but less on bricks with large crevices than without. These different responses to surface structure at different spatial scales demonstrate the importance of quantifying and manipulating substrate complexity at scales that are comparable with natural surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call