Abstract
I evaluate habitat matching rules based on ideal distribution models of density-dependent habitat use. Recent approaches and the ideal free continuous input matching rule on which they depend, are restricted to only those habitats that are jointly occupied across the full range of population sizes. These assumptions may often be inappropriate to field applications of habitat matching. I develop alternatives that can be applied to a wide array of ideal forms of habitat selection, including the ideal free, continuous input example. Input matching can be distinguished from assumptions of consumer-resource models and preemptive habitat use by regressions of density between paired habitats (isodars). Isodars for continuous input models should be linear on a logarithmic scale, while those for consumer-resource models should be linear on an arithmetic scale. Pre-emptive isodars can be distinguished from the others by dramatic non-linearities at both low and high densities. Field data on white-footed mice support the consumer-resource theory. Implications of the rules for population regulation and community organization are highlighted by new models that specify how the fitness of pre-emptive habitat selectors should decline with increasing density. Strong non-linearities produced by comparisons between variable and homogeneous habitats produce reversing source-sink population regulation and a new form of cyclical community dynamics. Variable habitats act as a source of emigrants at low density and a sink for immigrants at high density. Subordinate species may occupy only the variable habitat at both low and high density.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have