Abstract

Land use changes driven by human activities significantly impact biodiversity in plateau regions. However, current research is largely confined to identifying correlations between various factors and both habitat quality and degradation, overlooking the nonlinear relationships between them. To address this gap, we applied the PLUS-INVEST model to investigate the spatial effects of land-use changes on habitat quality and degradation patterns across the Tibetan Plateau during the 21st century. By employing a geographic detector, we determined the contribution rates of disturbance factors to habitat quality and degradation, and established constraint lines and threshold ranges between these factors. The findings reveal that: (1) The PLUS model demonstrates an exceptional performance in land-use simulation, with an overall accuracy of 0.8465. (2) The high-quality habitat area exhibits a declining trend, while the habitat degradation index steadily rises from 2000 to 2100, indicating a significant loss of biodiversity within the region. Habitat quality displays a spatial distribution pattern characterized by higher values in the south and lower values in the north, with areas in proximity to road threat sources experiencing more pronounced habitat degradation. (3) NDVI emerges as the most influential factor in promoting habitat quality, while the interaction of NDVI_Temperature exerts the greatest influence on spatial heterogeneity. The distance to resident emerges as the primary disturbance factor contributing to habitat degradation, with the interaction strength of GI_Resident being the most significant contributor. (4) Threshold intervals for ANPP, NDVI, precipitation, temperature, and distance to resident of optimal habitat quality and most severe degradation. This provides a novel scientific approach for designating areas for targeted conservation and intensive management restoration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.