Abstract

Habitat fragmentation is a considerable threat to biodiversity worldwide. To minimize the effects of fragmentation, it is important to identify and conserve the existing habitat connections that facilitate dispersal and gene flow among populations. Connected populations are more resilient to the changing environment that affects local populations due to greater demographic stability and higher genetic diversity. Our study is the first attempt to identify the crucial habitats facilitating the dispersal of two key sympatric cervids - spotted deer Axis axis and sambar Rusa unicolor in central India. We use species distribution models followed by landscape pattern analyses and connectivity analyses to delineate the essential habitats. Thereafter, we estimated the relative contribution of habitats outside protected areas in maintaining the ecological network, using graph-based metrics. We then locate and predict the areas that have a high risk of human-influenced cervid mortality using a Bayesian regression model that accounts for spatial structure in the data. The results show that about 55% of the core habitats, integrated across both species, lie outside the protected areas and are important in maintaining the ecological network for these cervids. Some peripheral habitats have an increased risk of anthropogenic cervid mortality, which poses high demographic risk. There is an urgent need to regulate the nature and intensity of human activities in areas of human-wildlife coexistence to maintain habitat connectivity and ensure the survival of wildlife populations. Our results on cervids complement analyses on connectivity for large carnivores and thus enables one to account for important trophic interactions among wildlife species in land use planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call