Abstract

The dynamin-like protein DnmA and its receptor FisA are essential for H2O2-induced mitochondrial division in Aspergillus nidulans. Here, we show that in the absence of DnmA or FisA, mitochondria show few spontaneous transient constrictions, the frequency of which is extensively increased by H2O2 or the carbonyl cyanide m-chlorophenyl hydrazone (CCCP). While H2O2-induced constrictions are transient, CCCP induces a drastic and irreversible alteration of mitochondrial filaments. H2O2 induces a gradual mitochondrial depolarization, while CCCP-induced depolarization is abrupt. The calcium chelator BAPTA-AM prevents the formation of mitochondrial constrictions induced by either H2O2 or CCCP. H2O2 also induces major rearrangements of the mitochondrial outer membrane, which remain after constrictions dissipate, as well as changes in endoplasmic reticulum (ER) and nuclear morphology. Similar mitochondrial constriction, ER and nuclear morphology changes are detected during the early stages of asexual development. ER and ER-Mitochondria encounter structure (ERMES) complex—composed of proteins Mdm10, Mmm1, Mdm43 and Mdm12—are important for mitochondrial division in Saccharomyces cerevisiae. As the Mdm10 ortholog MdmB was found to be essential in A. nidulans, we evaluated its functions in ΔmdmB terminal mutants and ΔmdmB heterokaryons. ΔmdmB conidia produce a short germ tube that fails to grow further, in which inherited mitochondria become gigantic and round shaped, lacking clear contacts with the ER. In slow-growing ΔmdmB heterokaryotic mycelia, multiple hyphae contain very long mitochondria with high ROS levels, as occur in ΔdnmA and ΔfisA mutants. In this hyphae, H2O2 fails to induce mitochondrial constrictions but not outer mitochondrial membrane reshaping, indicating that these are two separate effects of H2O2. Our results indicate that H2O2 induces a generalized mitochondrial constriction response, prior to actual division, involving gradual depolarization; they also indicate that Ca2+ and the ERMES complex are critical for both mitochondrial constriction and division. This supports a view of mitochondrial dynamics as the result of a cascade of signaling events that can be initiated in vivo by H2O2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.