Abstract
Wound is highly susceptible to bacterial infection, which can cause chronic wound and serial complications. However, timely treatment is hampered by the lack of real-time monitoring of wound status and effective therapeutic systems. Herein, in situ biosynthesis of functional conjugated polymer in artificial hydrogel was developed via the utilization of biological microenvironment to realize monitoring in real time of wound infection and inhibition of bacteria for the first time. Specially, an easily polymerizable aniline dimer derivative (N-(3-sulfopropyl) p-aminodiphenylamine, SPA) was artfully in situ polymerized into polySPA (PSPA) in calcium alginate hydrogel, which was initiated via the catalysis of hydrogen peroxide (H2O2) overexpressed in infected wound to produce hydroxyl radical (•OH) by preloaded horseradish peroxidase (HRP). Benefitting from outstanding near infrared (NIR) absorption of PSPA, such polymerization can be ingeniously used for real-time monitoring of H2O2 via naked-eye and photoacoustic signal, as well as NIR light-mediated photothermal inhibition of bacteria. Furthermore, combining the persistent chemodynamic activity of •OH, the in vivo experimental data proved that the wound healing rate was 99.03% on the 11th day after treatment. Therefore, the present work opens the way to manipulate in situ biosynthesis of functional conjugated polymer in artificial hydrogels for overcoming the issues on wound theranostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.