Abstract

Summary The problem of H∞ output tracking control over networked control systems (NCSs) with communication limits and environmental disturbances is studied in this paper. A wide range of time-varying stochastic problem arising in networked tracking control system is reduced to a standard convex optimization problem involving linear matrix inequalities (LMIs). The closed-loop hybrid NCS is modeled as a Markov jump linear system in which random time delays and packet dropouts are described as two stochastic Markov chains. Gridding approach is introduced to guarantee the finite value of the sequences of transmission delays from sensor to actuator. Sufficient conditions for the stochastic stabilization of the hybrid NCS tracking system are derived by the LMI-based approach through the computation of the optimal H∞ performance. The mode-dependent robust H∞ output tracking controller is obtained by the optimal iteration method. Numerical examples are given to demonstrate the effectiveness of the proposed robust output tracking controller for NCS. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.