Abstract
An H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">infin</sub> fuzzy observer-based control design is proposed for a class of nonlinear parabolic partial differential equation (PDE) systems with control constraints, for which the eigenspectrum of the spatial differential operator can be partitioned into a finite-dimensional slow one and an infinite-dimensional stable fast complement. In the proposed control scheme, Galerkin's method is initially applied to the PDE system to derive a nonlinear ordinary differential equation (ODE) system that accurately describes the dynamics of the dominant (slow) modes of the PDE system. The resulting nonlinear ODE system is subsequently represented by the Takagi-Sugeno (T-S) fuzzy model. Then, based on the T-S fuzzy model, a fuzzy observer-based controller is developed to stabilize the nonlinear PDE system and achieve an optimized H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">infin</sub> disturbance attenuation performance for the finite-dimensional slow system, while control constraints are respected. The outcome of the H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">infin</sub> fuzzy observer-based control problem is formulated as a bilinear matrix inequality (BMI) optimization problem. A local optimization algorithm that treats the BMI as a double linear matrix inequality is presented to solve this BMI optimization problem. Finally, the proposed design method is applied to the control of the temperature profile of a catalytic rod to illustrate its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.