Abstract
We have analyzed the differences in the methyl internal rotation induced by the HD isotope effect for acetaldehyde (CH(3)CHO) and deuterated acetaldehyde (CD(3)CDO) in ground state by means of the multicomponent molecular orbital (MC_MO) method, which directly accounts for the quantum effects of protons and deuterons. The rotational constant of CH(3)CHO was in reasonable agreement with experimental one due to the adequate treatment of the protonic quantum effect by the MC_MO method. The C-D bond distances were about 0.007 A shorter than the C-H distances because of the effect of anharmonicity of the potential. The Mulliken population for CD(3) in CD(3)CDO is larger than that for CH(3) in CH(3)CHO because the distribution of wavefunctions for the deuterons was more localized than that for the protons. The barrier height obtained by the MC_MO method for CH(3)CHO was estimated as 401.4 cm(-1), which was in excellent agreement with the experimentally determined barrier height. We predicted the barrier height of CD(3)CDO as 392.5 cm(-1). We suggest that the internal rotation of the CD(3) group was more facile than that of the CH(3) group because the C-D bond distance was observed to be shorter than the C-H distance. Additionally the localized electrons surrounding the CD(3) group in CD(3)CDO caused the extent of hyperconjugation between the CD(3) and CDO groups to be smaller than that in the case of CH(3)CHO, which may have also contributed to the observed differences in methyl internal rotation. The differences in bond distances and electronic populations induced by the H/D isotope effect were controlled by the difference in the distribution of wavefunctions between the protons and deuterons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.