Abstract

The geometric isotope effect (GIE) on low barrier hydrogen-bonded systems of acetic acid dimer, formic acid dimer, and their anion clusters is analyzed by HF and hybrid DFT levels of the multi-component molecular orbital (MC_MO) method, which directly includes nuclear quantum effect of proton/deuteron. Our optimized geometries for both neutral and anionic species with HF level of MC_MO method have reproduced the overall tendency of the GIE of the corresponding experimental ones. On the other hand, the results for anionic clusters with hybrid BHandHLYP functional of MC_MO method give poor agreement due to the underestimation of the barrier height of hydrogen-bonding. Our multi-component analysis clearly demonstrates that the hydrogen-bonding interaction energy is strongly affected by the distribution of nuclear wavefunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.