Abstract

The FTIR matrix isolation spectra of H2SO4 vapors show a group of bands with synchronous growth of their relative intensities which is independent of the water species content of the matrix layer. Their frequency positions indicate that the species they represent is H-bonded and composed of all three components (H2SO4, H2O, and SO3) involved in the vapor decomposition equilibrium of the acid molecule. Structure, stabilization energies, and vibrational frequencies of several H-bonded complexes between these components were considered in B3LYP calculations employing Dunning's correlation-consistent aug-cc-pVTZ basis sets. Correlations between spectral shifts, bond lengths, and H-bond energies were also considered. The best fitting complex is a ring structured 1:1:1 H2SO4·H2O·SO3. The indications are that the complex is formed in the vapor phase and not after deposition. The atmospheric significance may be in its ability to serve as a H-bonding nucleation center even without the presence of additional contaminants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call