Abstract

H 2 nuclear magnetic resonance (NMR) spectroscopy was employed to study the interaction between deuterated hydrogen gas and single walled carbon nanotubes before and after purification. Transmission electron micrographs revealed strong bundling of the tubes. After purification, very little amorphous carbon and no graphitic particles were present, implying that the interactions observed are truly due to the nanotubes. In the parent material, the NMR signal is dominated by interaction of hydrogen with residual metal catalyst particles. For purified material, hydrogen in the gas phase is discernible from adsorbed hydrogen. The two phases do not exchange with each other on a ms time scale. The hydrogen molecules move among different adsorption sites, presumably outer tube surfaces and interstitial channels. This process is diffusion limited in the pressure range investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call