Abstract

Mice expressing mutant H-2Kb alleles were tested for their ability to generate cytotoxic effector T-cells specific for the non-H-2 histocompatibility alloantigen H-4.2. Cytotoxic effectors specific for H-4.2 are preferentially restricted by the Kb allele. Mutant Kb alleles were observed to differentially regulate the magnitude of the H-4.2-specific cytotoxic effector response. Mice expressing the Kbm5, Kbm6, Kbm7, and Kbm9 alleles generated cytotoxic T-cells to the same level as mice expressing the wild-type Kb allele. Kbm8 and Kbm11 responders generated intermediate levels of effectors, whereas Kbm1, Kbm3, and Kbm10 responders did not generate detectable levels of cytotoxic effectors. Kbm4 responders produced high levels of H-4.2-specific cytotoxic effectors that were variably reactive with wild-type Kb antigens with no H-4.2. The ability to generate H-4.2-specific effectors generally correlated with (1) the ability of mutant Kb molecules to present H-4.2 to wild-type Kb-restricted effectors, and (2) the position of the respective amino acid interchanges on the Kb molecule. Mutations that altered the amino acid sequence in the vicinity of the disulfide bond in the C1 domain had the greatest deleterious effects on Kb-controlled responsiveness to H-4.2. The only exception was the Kbm11 intermediate responder, which differs from Kbm3 in both responsiveness and in a single amino acid interchange. Therefore, the amino acid sequence in the vicinity of the disulfide bond in the C1 domain plays a prominent role in determining the H-4.2-specific immune response potential. These observations are the first to clearly demonstrate association between particular MHC gene product, amino acid sequences and immune responsiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.