Abstract

Surface EEG measurements that can be performed in hospitals and laboratories have reached a wearable and portable level with the development of today's technologies. Artificial intelligence-assisted brain-computer interface (BCI) systems play an important role in individuals with disabilities to process EEG signals and interact with the outside world. In particular, the research is becoming widespread to meet the basic needs of individuals in need of home care with an increasing population. In this study, it is aimed to design the BCI system that will detect the hunger and satiety status of the people on the computer platform through EEG measurements. In this context, a database was created by recording EEG signals with eyes open and eyes closed by 20 healthy participants in the first stage of the study. The noise of the EEG signal is eliminated by using a low pass, high pass, and notch filters. In the classification, using Wavelet Packet Transform (WPT) with Coiflet 1 and Daubechies 4 wavelets, 77.50% accuracy was achieved in eyes closed measurement, and 81% in eyes open measurement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.