Abstract
The current article aims to examine the magnetohydrodynamics (MHD) impact on the flow of MgO–Ag/water-based hybrid nanoliquid with motile microorganisms and the fluid is allowed to flow over a Riga plate subject to slip effects and activation energy. Furthermore, the presence of a uniform heat source/sink is also addressed in the energy equation. In addition to this, the thermophoresis effect is highlighted in the concentration equation. From the present proposed model, we get a non-linear system of the governing equations. The obtained system of partial differential equations (PDEs) is converted to the dimensionless system of ordinary differential equations (ODEs) using the similarity transformation. The obtained high non-linear system of equations has been solved numerically, using the parametric continuation method (PCM). In the present analysis, the main motivation is to highlight the heat transfer rate of MgO–Ag/water-based hybrid nanofluid flow over a Riga plate. The second motivation of the present research is to highlight the impact of slip conditions on the velocity, energy, and mass profiles. From the graphical analysis, it is depicted that the slip conditions reduce the velocity, energy, and mass outlines. From the present analysis, we concluded that volume friction reduced the flow profile while increasing the temperature of the fluid flow over a Riga plate. All the parameters of the present research are highlighted in velocity temperature and concertation of the fluid. In addition to this in all the figures we have compared the hybrid nanofluid with mono nanofluid and the also the comparison between slip and no-slip conditions have carried out through graphs for velocity, temperature, and concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.