Abstract

Forward osmosis (FO) membranes with varying surface chemical functionalities respond differently to gypsum scaling. Using a real-time monitoring system, gypsum scaling was quantified between an asymmetric cellulose triacetate (CTA) and a thin-film composite (TFC) polyamide membrane in terms of water flux decline, gypsum surface coverage and gypsum crystal morphology. At the same initial water flux, the TFC membrane was subjected to more severe gypsum scaling than the CTA membrane in terms of water flux decline and gypsum crystal surface coverage. The gypsum crystal morphology on the CTA membrane featured with slender platelets; in contrast, that on the TFC membrane demonstrated the formation of rosette arrangements. Fourier transform infrared spectra and X-ray photoelectron spectroscopy proved that the gypsum scaling on CTA membrane was dominated by bulk crystallisation with subsequent deposition; while that on the TFC membrane was driven by surface crystallisation via specific interaction between carboxylic functional groups and calcium ions. No interaction between gypsum and CTA membrane surface was demonstrated by the largely unchanged ratio of wavenumbers 1740cm−1 (C=O stretching) to 1366cm−1 (C–O stretching), as well as binding energy of C1s on the CTA membrane. In contrast, specific interaction between carboxylic functional groups with calcium ions during gypsum scaling was revealed by a gradual increase in the ratio of absorbance wavenumber 3400cm−1 (O–H stretching) to 2970cm−1 (C–H stretching), and the occurrence of the carboxylate functional group at binding energy of 288.1eV on the TFC membrane during the formation of gypsum scaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.