Abstract

Obesity can induce dysbiosis in the gut microbiota and is considered a separate risk factor for kidney function decline. Nonetheless, the precise function of intestinal microorganisms in facilitating the connection between obesity and kidney function decline remains uncertain. Hence, the objective of this study was to investigate the alterations in the gut microbiota composition that take place during obesity and their correlations with renal function utilizing a rat model. For 20 weeks, 25 Sprague-Dawley rats were fed either a high-fat diet (HFD) or a normal-fat normal diet (ND). Physiological indices, peripheral plasma, kidney tissue, and colon contents were collected for comparison between groups. Metagenomic analysis of intestinal flora was performed. The HFD group demonstrated significantly increased levels of creatinine and urea nitrogen in the peripheral blood. Additionally, the HFD rats exhibited a significantly larger glomerular diameter compared to the ND group, accompanied by the presence of glomerulosclerosis, tubular vacuolar transformation, and other pathological changes in certain glomeruli. Metagenomics analysis revealed a notable rise in the prevalence of the Firmicutes phylum within the HFD group, primarily comprising the Rumenococcus genus. Functional analysis indicated that the gut microbiota in the HFD group primarily correlated with infectious diseases, signal transduction, and signaling molecules and interactions. This study provides evidence that the consumption of a HFD induces modifications in the composition and functionality of the gut microbiome in rats, which may serve as a potential mechanism underlying the relationship between obesity and the progression of kidney function decline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call