Abstract

Isoniazid (INH) is a highly effective single and/or combined first-line anti-tuberculosis (anti-TB) therapy drug, and the hepatotoxicity greatly limits its clinical application. INH-induced liver injury (INH-DILI) is a typical immune-mediated idiosyncratic drug-induced liver injury. Existing mechanisms including genetic variations in drug metabolism and immune responses cannot fully explain the differences in susceptibility and sensitivity to INH-DILI, suggesting that other factors may be involved. Accumulating evidence indicates that the development and severity of immune-mediated liver injury is related to gut microbiota. In this study, INH exposure caused liver damage, immune disregulation and microbiota profile alteration. Depletion of gut microbiota ameliorated INH-DILI, and improved INH-DILI-associated immune disorder and inflammatory response. Moreover, hepatotoxicity of INH was ameliorated by fecal microbiota transplantation (FMT) from INH-treated mice. Notably, Bifidobacterium abundance was significantly associated with transaminase levels. In conclusion, our results suggested that the effect of gut microbiota on INH-DILI was related to immunity, and the difference in INH-DILI sensitivity was related to the structure of gut microbiota. Changes in the structure of gut microbiota by continuous exposure of INH resulted in the tolerance to liver injury, and probiotics such as Bifidobacterium might play an important role in INH-DILI and its "adaptation" phenomenon. This work provides novel evidence for elucidating the underlying mechanism of difference in individual’s response to INH-DILI and potential approach for intervening anti-TB drug liver injury by modulating gut microbiota.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.