Abstract

IntroductionEsmolol may efficiently reduce heart rate (HR) and decrease mortality during septic shock. An improvement of microcirculation dissociated from its macrocirculatory effect may a role. The present study investigated the effect of esmolol on gut and sublingual microcirculation in a resuscitated piglet model of septic shock.MethodsFourteen piglets, anesthetized and mechanically ventilated, received a suspension of live Pseudomonas aeruginosa. They were randomly assigned to two groups: the esmolol (E) group received an infusion of esmolol, started at 7.5 μg⋅kg−1⋅min−1, and progressively increased to achieve a HR below 90 beats⋅min−1. The control (C) group received an infusion of Ringer’s lactate solution. HR, mean arterial pressure (MAP), cardiac index (CI), stroke index (SI), systemic vascular resistance (SVR), arterio-venous blood gas and lactate were recorded. Oxygen consumption (VO2), delivery (DO2) and peripheral extraction (O2ER) were computed. Following an ileostomy, a laser Doppler probe was applied on ileal mucosa to monitor gut microcirculatory laser Doppler flow (GMLDF). Videomicroscopy was also used on ileal mucosa and sublingual areas to evaluate mean flow index (MFI), heterogeneity, ratio of perfused villi and proportion of perfused vessels. Resuscitation maneuvers were performed following a defined algorithm.ResultsBacterial infusion induced a significant alteration of the gut microcirculation with an increase in HR. Esmolol produced a significant time/group effect with a decrease in HR (P <0.004) and an increase in SVR (P <0.004). Time/group effect was not significant for CI and MAP, but there was a clear trend toward a decrease in CI and MAP in the E group. Time/group effect was not significant for SI, O2ER, DO2, VO2, GMLDF and lactate. A significant time/group effect of ileal microcirculation was found with a lower ileal villi perfusion (P <0.025) in the C group, and a trend toward a better MFI in the E group. No difference between both groups was found regarding microcirculatory parameters in the sublingual area.ConclusionsEsmolol provided a maintenance of microcirculation during sepsis despite its negative effects on macrocirculation. Some parameters even showed a trend toward an improvement of the microcirculation in the gut area in the esmolol group.

Highlights

  • Esmolol may efficiently reduce heart rate (HR) and decrease mortality during septic shock

  • Microcirculation was evaluated in the sublingual area but not in the gut area, as this area can hardly be assessed in a clinical setting

  • Evaluation of correlation between gut and sublingual microcirculation was not the principal aim of our study, and we report no correlation between both microcirculations in our experimental setting, which remains consistent with the conflicting reports in the literature regarding the link between both sites [40, 41]

Read more

Summary

Introduction

Esmolol may efficiently reduce heart rate (HR) and decrease mortality during septic shock. The present study investigated the effect of esmolol on gut and sublingual microcirculation in a resuscitated piglet model of septic shock. Esmolol is an ultrashort-acting beta-blocker that has been reported as an efficient treatment to decrease heart rate (HR) during septic shock; its use has been associated with reduced mortality in a recent study [1]. As gut and sublingual microcirculations can be uncoupled [11], and since gut barrier preservation has been described as a potential mechanism of action for beta-blockers [12], there is a need to evaluate both gut and sublingual microcirculatory during esmolol treatment in patients in critical condition. The aim of our study was to evaluate the effects of a short-acting beta-blocker at the early stages of sepsis on gut and sublingual microcirculation in a piglet model of septic shock. The secondary endpoint was the effect of esmolol on sublingual microcirculation, macrocirculation, oxygen metabolism and lactate

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.