Abstract

AbstractThe Gulf of Aden represents an evolving example of a juvenile ocean system and is considered the most evolved rift arm of the Afar triple junction. We have undertaken analysis of recent coupled satellite and marine potential-field data to understand the first-order crustal architecture along the entire length of the gulf. Our interpretation suggests the Gulf of Aden has three domains with distinct free-air gravity and magnetic characteristics. These domains record a progression from active seafloor spreading in the eastern domain, through isolated and discontinuous spreading segments in the central domain, to active continental rifting in the western domain immediately adjacent to the Afar triple junction. Forward models suggest the presence of transitional crust, which displays linear magnetic stripe–like anomalies that bound oceanic stripes in the central domain and covering the majority of the western domain. Magnetic anomalies differ from magnetic stripes sensu stricto because they are discontinuous and cannot be correlated along the length of the gulf. Detection of northwest-southeast extension in the central domain based on magnetic stripe orientation is inconsistent with the regional northeast-southwest extension. Our observations reflect heterogeneous opening of the Gulf of Aden basins, in which spreading is migrating toward Afar as a series of isolated spreading segments, rather than initiating at the junction as proposed by classical plate-tectonic theory. This mechanism of ocean initiation is inconsistent with transtensional models that involve wholesale tearing of continental crust and contradicts conceptual models that rely on the Afar plume in initiating or driving the extension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call