Abstract
The discovery and development of small-molecule therapeutics effective against Gram-negative pathogens are highly challenging tasks. Most compounds that are active in biochemical settings fail to exhibit whole-cell activity. The major reason for this lack of activity is the effectiveness of bacterial cell envelopes as permeability barriers. These barriers originate from the nutrient-selective outer membranes, which act synergistically with polyspecific efflux pumps. Guiding principles to enable rational optimization of small molecules for efficient penetration and intracellular accumulation in Gram-negative bacteria would have a transformative impact on the discovery and design of chemical probes and therapeutics. In this Perspective, we draw on inspiration from traditional medicinal chemistry approaches for eukaryotic drug design to present a broader call for action in developing comparable approaches for Gram-negative bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.