Abstract
A long-standing challenge in skeletal tissue engineering is to reconstruct a three-dimensionally (3D) interconnected bone cell network in vitro that mimics the native bone microarchitecture. While conventional hydrogels are extensively used in studying bone cell behavior in vitro, current techniques lack the precision to manipulate the complex pericellular environment found in bone. The goal of this study is to guide single bone cells to form a 3D network in vitro via photosensitized two-photon ablation of microchannels in gelatin methacryloyl (GelMA) hydrogels. A water-soluble two-photon photosensitizer (P2CK) was added to soft GelMA hydrogels to enhance the ablation efficiency. Remarkably, adding 0.5 mM P2CK reduced the energy dosage threshold five-fold compared to untreated controls, enabling more cell-compatible ablation. By employing low-energy ablation (100 J/cm2) with a grid pattern of 1 µm wide and 30 µm deep microchannels, we induced dendritic outgrowth in human mesenchymal stem cells (hMSC). After 7 days, the cells successfully utilized the microchannels and formed a 3D network. Our findings reveal that cellular viability after low-energy ablation was comparable to unablated controls, whereas high-energy ablation (500 J/cm2) resulted in 42 % cell death. Low-energy grid ablation significantly promoted network formation and >40 µm long protrusion outgrowth. While the broad-spectrum matrix metalloproteinase inhibitor (GM6001) reduced cell spreading by inhibiting matrix degradation, cells invaded the microchannel grid with long protrusions. Collectively, these results emphasize the potential of photosensitized two-photon hydrogel ablation as a high-precision tool for laser-guided biofabrication of 3D cellular networks in vitro. Statement of SignificanceThe inaccessible nature of osteocyte networks in bones renders fundamental research on skeletal biology a major challenge. This limit is partly due to the lack of high-resolution tools that can manipulate the pericellular environment in 3D cultures in vitro. To create bone-like cellular networks, we employ a two-photon laser in combination with a two-photon sensitizer to erode microchannels with low laser dosages into GelMA hydrogels. By providing a grid of microchannels, the cells self-organized into a 3D interconnected network within days. Laser-guided formation of 3D networks from single cells at micron-scale resolution is demonstrated for the first time. In future, we envisage in vitro generation of bone cell networks with user-dictated morphologies for both fundamental and translational bone research.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have