Abstract
The progress in the field of Machine Learning (ML) has enabled the automation of tasks that were considered impossible to program until recently. These advancements today have incited firms to seek intelligent solutions as part of their enterprise software stack. Even governments across the globe are motivating firms through policies to tape into ML arena as it promises opportunities for growth, productivity and efficiency. In reflex, many firms embark on ML without knowing what it entails. The outcomes so far are not as expected because the ML, as hyped by tech firms, is not the silver bullet. However, whatever ML offers, firms urge to capitalise it for their competitive advantage. Applying ML to real-life construction industry problems goes beyond just prototyping predictive models. It entails intensive activities which, in addition to training robust ML models, provides a comprehensive framework for answering questions asked by construction folks when intelligent solutions are getting deployed at their premises to substitute or facilitate their decision-making tasks. Existing ML guidelines used in the IT industry are vastly restricted to training ML models. This paper presents guidelines for Applied Machine Learning (AML) in the construction industry from training to operationalising models, which are drawn from our experience of working with construction folks to deliver Construction Simulation Tool (CST). The unique aspect of these guidelines lies not only in providing a novel framework for training models but also answering critical questions related to model confidence, trust, interpretability, bias, feature importance and model extrapolation capabilities. Generally, ML models are presumed black boxes; hence argued that nobody knows what a model learns and how it generates predictions. Even very few ML folks barely know approaches to answer questions asked by the end users. Without explaining the competence of ML, the broader adoption of intelligent solutions in the construction industry cannot be attained. This paper proposed a detailed process for AML to develop intelligent solutions in the construction industry. Most discussions in the study are elaborated in the context of profit margin estimation for new projects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.