Abstract

Ocean exploration is in its infancy with more than 80% of the oceans still unexplored. Contrary to space exploration, electromagnetic waves have seldom been used underwater because of their heavy absorption by seawater. In this article, we present guidance, navigation, and control systems to steer autonomous underwater vehicles (AUVs) such that a permanent optical network can be set up between the deep sea and the surface. The challenge is to guarantee that there is consistently a path through the AUV network to relay the signal for an unlimited time despite the finite battery's lifetime of the AUVs. To achieve this, the guidance system combines a decentralized model predictive control (D-MPC) with graph theory to compute the trajectory of each agent relaying the optical signal as well as of redundant agents forming local leader–follower formations with each relay acting as leader of its own subfleet. The D-MPC solves a constrained optimization problem where the communication and collision avoidance constraints are formulated to enable two successive leaders and one of their followers to remain within optical range and thus allowing to immediately re-route the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ad hoc</i> network if a leader fails to relay the signal. Its combination with graph theory allows to change the dynamic topology of the swarm, with additional agents diving from a charging station, such that the network can relay the optical signal for an unlimited time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.