Abstract

The enclathration of guest gases such as CH4 and CO2 in tetra-n-butyl ammonium chloride (TBAC) semiclathrates and their potential application to natural gas storage and CO2 capture were examined with a primary focus on stability condition measurements and cage filling characteristics. The phase behaviors clearly demonstrated that the double CH4 (or CO2)+TBAC semiclathrates yielded a significantly enhanced thermodynamic stability. In particular, the highest stabilization occurred at 3.3mol%, the stoichiometric concentration of TBAC·29.7H2O. The cage-dependent 13C NMR chemical shift identified CH4 molecules enclathrated in the small 512 cages of the double TBAC semiclathrates. CO2 inclusion in the double TBAC semiclathrate was also confirmed using Raman spectroscopy. In addition, the dissociation enthalpy and the dissociation temperature of the TBAC semiclathrate under atmospheric pressure were measured to be 204.8±1.7J/g and 288.0K, respectively, by a differential scanning calorimeter. The experimental results demonstrate that TBAC semiclathrates can potentially be used for gas storage and CO2 capture due to their high thermodynamic stability and favorable enclathration characteristics of guest gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.