Abstract

The paper continues the application of the bifurcation analysis in the research on local climate dynamics based on processing the historically observed data on the daily average land surface air temperature. Since the analyzed data are from instrumental measurements, we are doing the experimental bifurcation analysis. In particular, we focus on the discussion where is the joint between the normal dynamics of local climate systems (norms) and situations with the potential to create damages (hazards)? We illustrate that, perhaps, the criteria for hazards (or violent and unfavorable weather factors) relate mainly to empirical considerations from human opinion, but not to the natural qualitative changes of climate dynamics. To build the bifurcation diagrams, we base on the unconventional conceptual model (HDS-model) which originates from the hysteresis regulator with double synchronization. The HDS-model is characterized by a variable structure with the competition between the amplitude quantization and the time quantization. Then the intermittency between three periodical processes is considered as the typical behavior of local climate systems instead of both chaos and quasi-periodicity in order to excuse the variety of local climate dynamics. From the known specific regularities of the HDS-model dynamics, we try to find a way to decompose the local behaviors into homogeneous units within the time sections with homogeneous dynamics. Here, we present the first results of such decomposition, where the quasi-homogeneous sections (QHS) are determined on the basis of the modified bifurcation diagrams, and the units are reconstructed within the limits connected with the problem of shape defects. Nevertheless, the proposed analysis of the local climate dynamics (QHS-analysis) allows to exhibit how the comparatively modest temperature differences between the mentioned units in an annual scale can step-by-step expand into the great temperature differences of the daily variability at a centennial scale. Then the norms and the hazards relate to the fundamentally different viewpoints, where the time sections of months and, especially, seasons distort the causal effects of natural dynamical processes. The specific circumstances to realize the qualitative changes of the local climate dynamics are summarized by the notion of a likely periodicity. That, in particular, allows to explain why [Formula: see text]-year averaging remains the most common rule so far, but the decadal averaging begins to substitute that rule. We believe that the QHS-analysis can be considered as the joint between the norms and the hazards from a bifurcation analysis viewpoint, where the causal effects of the local climate dynamics are projected into the customary timescale only at the last step. We believe that the results could be interesting to develop the fields connected with climatic change and risk assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call