Abstract

This paper is devoted to the development of the experimental bifurcation analysis in the research of local climate dynamics. In particular, we consider the dynamics of the land surface air temperature in the centennial timescale. The experimental bifurcation analysis supposes the choice of a conceptual model to demonstrate how the observable kinds of dynamical processes can be realized on the whole. We worked on the conceptual model with a variable structure (HDS-model), where the dynamics is determined by the competition between the amplitude quantization and the time quantization. The model originates from the hysteresis regulator with double synchronization (HDS-regulator) proposed in 1970’s to achieve the extreme combination of both efficiency and reliability of energy conversion processes. The HDS-model allows to consider the interplay between several periodical processes instead of chaos and quasi-periodicity in order to excuse the variety of the behaviors observed in the local climate dynamics. In particular, the intermittency seems to be the typical behavior of a local climate system from such viewpoint. Here we continue to verify the HDS-model and continue to develop the idea of the modified bifurcation diagrams to reveal the regularities within the intermittency. In particular, we first build the spatial diagram to summarize the results of the bifurcation analysis of the local climate dynamics in the centennial timescale. We assume that each effect of the regional temperature oscillations (RTO-effect) appears as a certain combination of several effects of the local temperature oscillations (LTO-effects), where each LTO-effect can be revealed by the bifurcation analysis. The possibility to build the modified bifurcation diagrams is provided by the SUC-logic aimed for the synthesis of experimental bifurcation analysis, symbolical analysis, and multidimensional data visualization under the assumption that an annual warming–cooling cycle is the unit to analyze. Since only the historical data of the temperature observations are used, then the results approach as close as possible to the real events. We believe that our research seems to be interesting to estimate the theoretically possible latent abilities and evolution of the local climate dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.