Abstract
Climate change-induced drought is a major threat to agriculture. C4 crops have a higher water use efficiency (WUE) and better adaptability to drought than C3 crops due to their smaller stomatal morphology and faster response. However, our understanding of stomatal behaviours in both C3 and C4 Poaceae crops is limited by knowledge gaps in physical traits of guard cell (GC) and subsidiary cell (SC). We employed infrared gas exchange analysis and a stomatal assay to explore the relationship between GC/SC sizes and stomatal kinetics across diverse drought conditions in two C3 (wheat and barley) and three C4 (maize, sorghum and foxtail millet) upland Poaceae crops. Through statistical analyses, we proposed a GCSC-τ model to demonstrate how morphological differences affect stomatal kinetics in C4 Poaceae crops. Our findings reveal that morphological variations specifically correlate with stomatal kinetics in C4 Poaceae crops, but not in C3 ones. Subsequent modelling and experimental validation provide further evidence that GC/SC sizes significantly impact stomatal kinetics, which affects stomatal responses to different drought conditions and thereby WUE in C4 Poaceae crops. These findings emphasize the crucial advantage of GC/SC morphological characteristics and stomatal kinetics for the drought adaptability of C4 Poaceae crops, highlighting their potential as future climate-resilient crops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.