Abstract
We derive guaranteed a posteriori error estimates for nonconforming finite element approximations to a singularly perturbed reaction–diffusion problem. First, an abstract a posteriori error bound is derived under a special equilibration condition. Based on conservative flux reconstruction, two error estimators are proposed and provide actual upper error bounds in the usual energy norm without unknown constants, one of which can be directly constructed without solving local Neumann problems and provide practical computable error bounds. The error estimators also provide local lower bounds but with the multiplicative constants dependent on the diffusion coefficient and mesh size, where the constants can be bounded for enough small mesh size comparable with the square root of the diffusion coefficient. By adding edge jumps with weights to the energy norm, two modified error estimators with additional edge tangential jumps are shown to be robust with respect to the diffusion coefficient and provide guaranteed upper bounds on the error in the modified norm. Finally, the performance of the estimators are illustrated by the numerical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.