Abstract

In this paper we present error estimates for the finite element approximation of linear elastic equations in an unbounded domain. The finite element approximation is formulated on a bounded computational domain using a nonlocal approximate artificial boundary condition or a local one. In fact there are a family of nonlocal approximate boundary conditions with increasing accuracy (and computational cost) and a family of local ones for a given artificial boundary. Our error estimates show how the errors of the finite element approximations depend on the mesh size, the terms used in the approximate artificial boundary condition, and the location of the artificial boundary. A numerical example for Navier equations outside a circle in the plane is presented. Numerical results demonstrate the performance of our error estimates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call