Abstract
BackgroundGuanfacine (an alpha-2A receptor agonist) is a commonly used drug with recognized efficacy in the treatment of attention deficit hyperactivity disorder (ADHD). This study aimed to assess the effects of guanfacine on short-lasting (interictal) epileptiform discharges in cortical neurons. Moreover, we assessed the effects of guanfacine on voltage-gated sodium currents.MethodsWe conducted patch-clamp recordings in prefrontal cortex pyramidal neurons obtained from young rats. Interictal epileptiform events were evoked in cortical slices in a zero magnesium proepileptic extracellular solution with an elevated concentration of potassium ions.ResultsInterictal epileptiform discharges were spontaneous depolarisations, which triggered action potentials. Guanfacine (10 and 100 µM) inhibited the frequency of epileptiform discharges. The effect of guanfacine on interictal events persisted in the presence of alpha-2 adrenergic receptor antagonist idazoxan. The tested drug inhibited neuronal excitability. Tonic NMDA currents were not influenced by guanfacine. Recordings from dispersed neurons showed that the tested drug (10 and 100 µM) inhibited persistent and fast inactivating voltage-gated sodium currents.ConclusionsThis study shows that guanfacine inhibits interictal discharges in cortical neurons independently of alpha-2A adrenergic receptors. This effect may be mediated by voltage-gated sodium currents. Inhibition of interictal activity by guanfacine may be of clinical importance because interictal events often occur in patients with ADHD and may contribute to symptoms of this disease.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.