Abstract

Guaiacol (2-methoxyphenol) is naturally occurring phenolic compound essential in various research areas. Oxidative transformation of guaiacol can lead to the formation of various products, including 1,3-benzodioxole or ortho-quinone. Therefore, this study is focused on the investigation of the reaction enthalpies of experimentally observed guaiacol oxidation pathways in gas-phase, as well as in non-polar environment and aqueous solution. Corresponding Density Functional Theory (DFT) calculations were carried out using two hybrid functionals (M06-2X and B3LYP-D3). All reaction enthalpies, as well as Gibbs free energies, were also calculated using composite ab-initio G4 method. M06-2X and G4 results show mutual agreement and the best accordance with available experimentally determined reaction enthalpies. Obtained Gibbs free reaction energies indicate that formation of ortho-quinone is thermodynamically preferred to formation of 1,3-benzodioxole at 298 K in studied environments. Moreover, all computational methods confirm that the reaction enthalpy of methoxy group demethylation, i.e., O–C bond dissociation enthalpy (BDE), is substantially lower in comparison to the enthalpy of hydrogen atom transfer from phenolic OH group. In the case of phenoxide anion of guaiacol, which can be formed in ionization supporting solvents, O–C BDE shows further significant decrease, exceeding 50 kJ mol−1, in comparison to parent molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.