Abstract

Mobile Crowd Sensing (MCS) technology, as an emerging data collection paradigm, offers distinct advantages, particularly in applications like smart city management. However, existing researches inadequately address the comprehensive solution to the problem of reliable task allocation according to the requirements such as task budget, sensory data quality, and real-time data collection, especially under varying participant engagement in MCS systems. To bridge this gap, we propose the Grid-based Two-stage Dynamic Incentive Mechanism (GTDIM). In the first stage, the Candidate Participant Set (CPS) establishment phase, participants receive compensation for collecting sensory data when a sufficient number are available. When participants are insufficient, additional rewards inspired by the grid division of sensing areas are progressively offered to attract more participants. In the subsequent stage, utilizing the established CPS, participants are selected through a greedy algorithm based on the newly devised Participant Matching Index (PMI), which integrates various participant features. Extensive simulation results reveal the impact of PMI on participant selection. Numerical findings conclusively demonstrate GTDIM’s superior performance over baseline incentive mechanisms in terms of task assignment ratio, participant payment, and especially when dealing with larger sensing tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call