Abstract

Endothelial-mesenchymal transition (EndMT) drives the endothelium to contribute to vascular calcification in diabetes mellitus. In our previous study, we showed that glycogen synthase kinase-3β (GSK3β) inhibition induces β-catenin and reduces mothers against DPP homolog 1 (SMAD1) to direct osteoblast-like cells toward endothelial lineage, thereby reducing vascular calcification in Matrix Gla Protein (Mgp) deficiency. Here, we report that GSK3β inhibition reduces vascular calcification in diabetic Ins2Akita/wt mice. Cell lineage tracing reveals that GSK3β inhibition redirects endothelial cell (EC)-derived osteoblast-like cells back to endothelial lineage in the diabetic endothelium of Ins2Akita/wt mice. We also find that the alterations in β-catenin and SMAD1 by GSK3β inhibition in the aortic endothelium of diabetic Ins2Akita/wt mice are similar to Mgp-/- mice. Together, our results suggest that GSK3β inhibition reduces vascular calcification in diabetic arteries through a similar mechanism to that in Mgp-/- mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call