Abstract

Computational drug repositioning helps to decipher the complex relations among drugs, targets, and diseases at a system level. However, most existing computational methods are biased towards known drugs-disease associations already verified by biological experiments. It is difficult to achieve excellent performance with sparse known drug-disease associations. In this article, we present a graph regularized transductive regression method (GRTR) to predict novel drug-disease associations. The proposed method first constructs a heterogeneous graph consisting of three interlinked sub-graphs including drugs, diseases and targets from multiple sources and adopts preliminary estimation of drug-related disease to initial unknown drug-disease associations for unlabeled drugs. Since the known drug-disease associations are sparse, graph regularized transductive regression is used to score and rank drug-disease associations iteratively. In the computational experiments, the proposed method achieves better performance than others in terms of AUC and AUPR. Moreover, the varying of parameters is shown to verify the importance of preliminary estimation in GRTR. Case studies on several selected drugs further confirm the practicality of our method in discovering potential indications for drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.