Abstract
Drug research and development is a time-consuming and high-cost task, pressing an urgent demand to identify novel indications of approved drugs, referred to as drug repositioning, which provides an economical and efficient way for drug discovery. With increasing volumes of large-scale chemical, genomic, and pharmacological data sets generated by the high-throughput technique, it is crucial to develop systematic and rational computational approaches to identify new indications of approved drugs. In this paper, we introduce HNet-DNN, which utilizes a deep neural network (DNN), to predict new drug-disease associations based on the features extracted from the drug-disease heterogeneous network. Instead of the straightforward concatenation of chemical and phenotypic features as the input of DNN, we used these raw features of drugs and diseases to construct a drug-drug similarity network and a disease-disease similarity network, and then built a drug-disease heterogeneous network by integrating known drug-disease associations. Subsequently, we extracted topological features for drug-disease associations from the heterogeneous network and used them to train a DNN model. Our intensive performance evaluations demonstrated that HNet-DNN effectively exploits the features of the heterogeneous network to boost the predictive performance of drug-disease associations. Compared with a couple of typical classifiers and competitive approaches, our method not only achieved state-of-the-art performance but also effectively alleviated the overfitting problem. Moreover, we ran HNet-DNN to predict new drug-disease associations and carried out case studies to verify the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.