Abstract

Cachexia, which affects 50–80% of cancer patients, is a debilitating syndrome that leads to 20% of cancer-related deaths. A key feature of cachexia is adipose tissue atrophy, but how it contributes to the development of cachexia is poorly understood. Here, we demonstrate in mouse models of cancer cachexia that white adipose tissue browning, which can be a characteristic early-onset manifestation, occurs prior to the loss of body weight and skeletal muscle wasting. By analysing the proteins differentially expressed in extracellular vesicles derived from cachexia-inducing tumours, we identified a molecular chaperone, Glucose-regulated protein 75 (GRP75), as a critical mediator of adipocyte browning. Mechanistically, GRP75 binds adenine nucleotide translocase 2 (ANT2) to form a GRP75–ANT2 complex. Strikingly, stabilized ANT2 enhances its interaction with uncoupling protein 1, leading to elevated expression of the latter, which, in turn, promotes adipocyte browning. Treatment with withanone, a GRP75 inhibitor, can reverse this browning and alleviate cachectic phenotypes in vivo. Overall, our findings reveal a novel mechanism by which tumour-derived GRP75 regulates white adipose tissue browning during cachexia development and suggest a potential white adipose tissue-centred targeting approach for early cachexia intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.